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              Abstract 

This paper investigates the differences between real-time and ex-post output gap estimates using 

a newly-constructed international real-time data set over the period from 1973:Q1 to 2012:Q3. 

We extend the findings in Orphanides and van Norden (2002) for the United States that the use 

of ex-post information in calculating potential output, not the data revisions themselves, is the 

major cause of the difference between real-time and ex-post output gap estimates to nine 

additional OECD countries. The results are robust to the use of linear, quadratic, Hodrick-

Prescott, Baxter-King, and Christiano-Fitzgerald detrending methods. By using quasi real-time 

methods, reliable real-time output gap estimates can be constructed with revised data. 
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1. Introduction 

An important measure of economic activity is the output gap, the percentage deviation of 

real output from its long-run trend. The output gap is central to the Phillips Curve where, if 

actual output exceeds its potential level, inflation tends to rise and, if it is below potential, 

inflation tends to fall. It is also central to the Taylor rule for monetary policy, where a positive 

output gap calls for an increase in the interest rate.   

Policymakers and researchers face uncertainties while estimating output gaps. Some of 

these uncertainties are common to both, as the choice of the data, the model, and the detrending 

technique could result in different output gap estimates. Other types of uncertainties are 

idiosyncratic. Policymakers estimate output gaps using real-time data, tautologically defined as 

the data available to policymakers at the time they are making decisions. Researchers, however, 

typically conduct policy evaluation using revised data that incorporates information available at 

the time the research is conducted. Output gaps estimated based on real-time data do not allow 

one to distinguish whether recent changes in the gap are caused by changes in the trend or by 

fluctuations around the trend. This end-of-sample uncertainty can cause serious problems for 

policy setters who are required to make decisions in real-time. While policymakers would prefer 

to have revised data, which better reflects the “true” state of the economy, this is obviously 

impossible.
1
 Researchers conducting policy evaluation, in contrast, would prefer real-time data 

that better reflects the information available to policymakers.  

Starting with Orphanides (2001), much research has been conducted on the impact of 

using real-time data for monetary policy evaluation, typically in the context of estimated Taylor 

rules that include inflation and output gaps. Since the differences between real-time and revised 

inflation are almost always much smaller than the differences between real-time and revised 

output gaps, accurate estimation of real-time output gaps is central to this work. We will stipulate 

that, if real-time data is available, it should be used for policy evaluation. The purpose of this 

paper is to investigate what researchers should do if real-time data is not available. 

Two factors explain the differences between ex-post and real-time output gap estimates. 

First, output gaps estimated in real-time may be different than output gaps estimated with revised 

data due to subsequent revisions in the output data itself. Second, with the arrival of new data, 

                                                           
1
 Policymakers can, of course, attempt to forecast data revisions.  These forecasts, however, would constitute real-

time data. 
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the trend may change even in the absence of data revisions. Orphanides and van Norden (1999, 

2002) argue that ex-post revisions of the estimated gap are of the same magnitude as the 

estimated gap itself. Using a selection of detrending techniques to estimate potential output, they 

find low correlations between real-time and revised estimates of U.S. output gaps. In the absence 

of real-time data, they propose constructing quasi real-time output gaps to proxy real-time output 

gap estimates. Quasi real-time estimation is based on ex-post revised data where the trend does 

not contain future observations, and to mimic the real-time nature, the gap at period t is 

calculated using only observations through period t. They report high correlations between real-

time and quasi real-time estimates of the U.S. output gap, leading them to conclude that most of 

the differences between real-time and revised estimates of the output gap arise from including 

realized future output series for the calculation of the trend, not from the data revisions 

themselves.  

A number of subsequent studies have focused on output gap estimates with real-time data 

for a single country. Using Canadian real-time data with vintages from 1972:Q1 to 2003:Q4, 

Cayen and van Norden (2005) provide evidence that data revisions are likely to be more 

important for Canada than for the U.S. Kamada (2005) compares GDP and non-GDP (capital 

utilization and labor related statistics) based real-time output gap estimates for Japan and finds 

that GDP based output gap measures are subject to severe real-time estimation problems. Using 

real-time GDP data for Australia from 1971:Q4 to 2001:Q4, Gruen et al. (2002) find that the 

output gap estimates obtained using real-time data are quite reliable, with the correlation between 

the real-time and revised output gaps over 0.8.  

There has been an extensive work on European countries that studied output gap 

measurement problems for real-time estimates. Nelson and Nikolov (2003) document the 

differences between real-time and revised output gap estimates for the U.K. using a real-time 

dataset from 1962:Q4 to 2000:Q4. They also find that real-time output gap estimates contain 

substantial errors and are on average larger in the U.K. than in the U.S. Garratt et al. (2009) 

report a similar conclusion as Nelson and Nikolov (2003) for the U.K. using the Bank of 

England’s real-time database. Bernhardsen et al. (2005) find that data revisions are less 

important than uncertainty about the trend at the end of the sample in estimating the output gap 

using real-time data for Norway from 1993:Q1 to 2003:Q4. Clausen and Meier (2005) construct 

a real-time dataset for Germany and calculate various measures of the output gap to estimate an 
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interest rate reaction function. Döpke (2004) analyses output gap estimates based on real-time 

German GDP data from 1980:Q1 to 2001:Q4 and generally finds relatively low correlations 

between both real-time and revised and quasi real-time and revised estimates. Mitchell (2003) 

finds substantial uncertainty in output gap density estimates using real-time data for the Euro 

area from 1992:Q3 to 2003:Q1. Recently, Marcellino and Musso (2011) use real-time real GDP 

data for the euro area with vintages starting from 2001:Q1 to 2010:Q4 and confirm the 

uncertainty of real-time estimates of the output gap.  

These studies use different series, sample periods, and methods to estimate real-time 

output gaps for a single country or a zone, and therefore do not allow for a comparison across 

countries. In order to provide such a comparison, we construct a real-time data set for 10 OECD 

countries based on information published in the International Financial Statistics (IFS) books 

from 1973:Q1 to 2012:Q3. Because GDP was not reported with sufficient consistency to 

construct reliable real-time data for these countries, we measure output by the Industrial 

Production Index. For three of the ten countries, Germany, the U.K., and the U.S., for which 

real-time GDP data is available from other sources, we compare the results using both output 

measures. 

We confirm the findings in Orphanides and van Norden (2002) for all 10 countries. For 

each country, the correlations between real-time and revised output gap estimates are low while 

the correlations between real-time and quasi real-time output gap estimates are high, implying 

that changes in the trend as the sample increases play a more important role in output gap 

estimation than the data revisions themselves. The results are robust to various types of 

detrending. The same pattern of correlations found with Industrial Production Index data is also 

found for Germany, the U.K., and the U.S. with real GDP data. Our results show that, if real-

time data is not available, output gap estimates based on quasi real-time data can be used as a 

reliable measure of real-time economic activity. 

 

2. Output Gap Estimation Methods 

The output gap is defined as the deviation of actual output from potential output. As there 

is no consensus in the literature on how to define potential output, we use the most common 

techniques in the literature and calculate the output gap as the percentage deviation of actual 

output from a linear time trend, a quadratic time trend, an Hodrick-Prescott (1997) (HP) trend, a 
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Baxter and King (1999) (BK) trend, and a Christiano and Fitzgerald (2003) trend. All of these 

detrending methods decompose the log of real output,    measured by the industrial production 

index, into a trend component,    and a cycle component   : 

                                                                 (1) 

1.  Linear Time Trend. The trend is a deterministic linear function of time. The log of real output 

   is regressed on a constant term and a linear time trend, X= {1 t}. The output gap is derived 

from the residuals from this OLS regression.  

2. Quadratic Time Trend. A quadratic term is added in the deterministic component, X= {1 t t
2
}. 

The residuals from the regression constitute the output gap.  

3. Hodrick-Prescott (HP) Filter. One of the most popular detrending techniques is suggested by 

Hodrick and Prescott (1997). The output gap is calculated by minimizing the loss-function: 

            
  

             
   
                                       (2) 

where    =      . The smoothness parameter λ punishes the variability in the trend component. 

An increase in the value of λ makes the trend component smoother, and the trend component 

becomes a linear trend as λ approaches to infinity. Following convention, we choose λ 1600 to 

detrend quarterly series.
2
 To handle the end-of-sample distortions created by the filter, we apply 

the technique proposed by Watson (2007) by using an AR (8) model to forecast the log of output 

12-quarters ahead before applying the filter.
3
 This is particularly important for real-time and 

quasi-real-time data, where every output gap estimate is calculated at the end of the sample. 

4. Baxter-King (BK) Filter. Another popular detrending technique is suggested by Baxter and 

King (1999). The BK filter is a symmetric filter that admits frequency components between 6 

and 32 quarters in a time series, and is also subject to the end-of-sample problem. We apply the 

same method proposed by Watson (2007) for the HP filter to get an estimate of output gaps at the 

end of the sample. In order to impose a unit weight constraint at zero frequency, the optimal 

filter weights,    are modified as functions of the weights of the ideal band-pass filter,    where 

         and          
 
             . K is the moving average lag length.  

5. Christiano-Fitzgerald (CF) Filter. The CF Filter is based on Christiano and Fitzgerald (1999, 

2003) that uses the linear approximation that is optimal under the assumption that the data are 

                                                           
2
 See for instance van Norden (1995) and St-Amant and van Norden (1998) for detailed discussion of the HP Filter. 

3
 Mise, Kim, and Newbold (2005) also show that the HP filter is suboptimal at the end points. 
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generated by a random walk. The CF filter isolates the component of    with a period of 

oscillation between    and   , where: 

                                                                    (3) 

for t  3  4  ….  T-2 and the filter weights are: 

   
               

  
     and    

   

 
   

  

  
   

  

  
                                     (4) 

Specifically,        is the sum of the   ’s over j= T-t, T-t   …. and       is the sum of the   ’s 

over j=t-   t …. Since the data is quarterly,    and   are chosen as 6 and 32 to admit frequency 

components between 1.5 and 8 years. 

 

3. Data  

Real-time data has a triangular format, where columns represent vintages of data, or dates 

when the data series is published, and rows represent calendar dates. Figure 1 illustrates the 

structure of real-time data using the first 11 vintages of Canadian industrial production index as 

an example. Each column represents a series of industrial production available to market 

participants in every quarter, and each row shows how an observation for each particular date has 

been revised over time. For example, the first column shows that the series that was published in 

the International Monetary Fund’s International Financial Statistics (IFS) issue for 1973:Q1. The 

industrial production index series in each data vintage that is used to estimate the output gap goes 

back to 1958:Q1. The revised data is constructed from the 2012:Q3 vintage, which is the last 

vintage for all the countries in our sample. 

3.1 Real-Time Datasets for the U.S., Germany, and U.K.  

Real-time data sets for the United States, Germany, and United Kingdom are publicly 

available and real GDP/GNP is used as a proxy for real output in these datasets. The real-time 

dataset for the U.S. comes from the Federal Reserve Bank of Philadelphia and is described in 

detail in Croushore and Stark (2001). We use U.S. real GDP vintages from 1973:Q1 to 2012:Q3, 

and the data in each vintage goes back to 1947:1. For each available vintage, the new value 

becomes available with a one-quarter lag.  

For Germany, the real-time data set is collected by Gerberding, Worms, and Seitz (2005) 

at the Bundesbank. The vintages are available from 1973:Q1 to 1998:Q4. Data points in each 

vintage start in 1962:Q1 and are updated with a one-quarter lag. In order to have endpoint as the 
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other real-time data sets, we extend the vintages through 2012:Q3 by splicing OECD real-time 

GDP data for Germany with the Bundesbank data.
4
    

Real-time real GDP data for U.K. is available from the Bank of England’s real time 

database.
5
 The main body of the database contains quarterly vintages of data published since the 

first quarter of 1990, so that the Bank of England real-time data consists of vintages from 

1990:Q1 to 2012:Q3. Real GDP is updated every year following the publication of the Office for 

National Statistics (ONS) Blue Book. The data in each vintage starts in 1970:Q1 and is updated 

with a one-quarter lag. 

3.2 IFS Real-Time Dataset 

Real-time data sets are not, however, available for most countries. We construct a real-

time data set for 10 OECD countries, Australia, Canada, France, Germany, Italy, Japan, 

Netherlands, Sweden, the United Kingdom, and the United States, using the International 

Monetary Fund (IMF) International Financial Statistics (IFS) country pages. The IFS is the 

IMF’s principal statistical publication, and has been published monthly since January 1948. The 

country pages show major economic aggregates.  

We use seasonally adjusted industrial production index (IFS line 66) as a proxy for real 

output. Industrial production indexes are included as indicators of current economic activity and 

for some countries they are supplemented by indicators relevant to a particular country (such as 

tourism). Generally, the coverage of industrial production indexes consists of mining and 

quarrying, manufacturing and electricity, and gas and water. The indexes are computed using the 

Laspeyres formula.  

The three alternative real-time datasets for the U.S., Germany, and the U.K. described in 

Section 3.1 use real GDP/GNP as a proxy for real output. Unfortunately, the real GDP/GNP data 

is not consistently available for all the countries in the IFS country tables. For some countries, 

especially early in the sample period, real GDP/GNP is either reported annually or reported with 

a long lag. In contrast to GDP, the industrial production index is updated regularly and made 

available on a monthly basis. Each vintage in our quarterly real-time data set comprises the data 

available as of the middle month (February, May, August, and November) of a given quarter. For 

                                                           
4
 http://stats.oecd.org/Index.aspx?querytype=view&queryname=206 

5
 http://www.bankofengland.co.uk/statistics/gdpdatabase/index.htm 
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the 10 OECD countries, including the U.S, used in this study the IFS dataset covers the vintages 

from 1973:Q1 to 2012:Q3 with data series in each vintage starting in 1958:Q1.  

In order to illustrate the relationship between industrial production and real GDP, Figure 

2 presents real-time year-over-year growth rates of industrial production and real GDP for the 

U.S. using vintages from 1973:Q1 to 2012:Q3.
6
 Although the industrial production growth rate is 

more volatile, the two series track each other very closely and have a correlation of 0.89. Watson 

(2007) uses industrial production and real GDP to estimate output gaps and finds that the gaps 

estimated in real-time using both series have similar patterns. We present further evidence of the 

similarity between real-time output gaps estimated using industrial production and real GDP in 

section 5.1. 

 

4. Measuring Output Gap Uncertainty 

The five detrending methods discussed in Section 2 are applied to each real-time dataset 

in three different ways to decompose either real GDP or the industrial production index into 

trend and cycle components and to characterize the role that the revisions play in output gap 

estimation. We follow Orphanides and van Norden (2002) in constructing and comparing real-

time, quasi real-time, and revised estimates of the output gap.
7
   

To construct real-time output gaps, we first estimate the output gap for the last date in 

each series, starting with 1958:Q1 – 1972:Q4 and ending with 1958:Q1 – 2012:Q2, using the 

data available in each quarter from 1973:Q1 to 2012:Q3. We then use these vintages of estimated 

output gaps to construct a new series of real-time output gaps by pairing vintage dates with the 

last available observations in each quarter, generally available with a one-quarter lag. In order to 

construct revised output gap estimates, we use the last vintage, 2012:Q3, in each dataset. The 

entire series available in the last vintage date is used to estimate the revised trend. Quasi real-

time output gaps are constructed in exactly the same way as real-time output gaps, using the data 

up to period t to estimate the output gap for period t, but are estimated using revised data.  

Output gaps estimated using the same techniques with real-time and revised data might 

be different because of (1) the data revisions themselves and (2) the additional observations with 

revised data affect the trend which measures potential output and, therefore, the deviations from 

                                                           
6
 The data is taken from the real time-data set of the Federal Reserve Bank of Philadelphia. The figure presents the 

latest available year-to-year growth rate of both series in each vintage. 
7
 Orphanides and van Norden (2002) refer to revised output gap estimates as “final” estimates in their work.  
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the trend.
8
 Real-time and quasi real-time output gaps are estimated using data for exactly the 

same period and differ only because of the revisions in the data. Revised and quasi real-time 

output gaps differ only because of changes in the trend. The use of real-time, quasi real-time, and 

revised estimates allows us to compare the importance of the two factors and determine whether 

reliable estimates of real-time output gaps can be constructed with revised data. 

 

5. Results 

5.1 Output Gap Estimates for Germany, U.S., and U.K Using IFS and Alternative Real-Time 

Data Sets 

The relationships between real-time, revised, and quasi real-time output gap estimates are 

first examined visually by plotting them in pairs for the U.S. Figure 3 displays HP filtered output 

gap for the U.S. estimated using the Philadelphia Fed real-time dataset as in Orphanides and van 

Norden (2002), extending the sample size to 2012:Q3.
9
 Two observations can be made based on 

visual examination of three panels, which depict real-time and revised output gaps (Panel A), 

quasi real-time and revised output gaps (Panel B), and real-time and quasi real-time output gaps 

(Panel C). First, both real-time and revised estimates and quasi real-time and revised estimates 

on Panels A and B exhibit substantial differences throughout the sample. Second, the differences 

between real-time and quasi real-time output gap estimates on Panel C are much less 

pronounced.
10

 

Table 1 provides summary statistics for five output gap measures in percentage points 

estimated using real-time, revised, and quasi real-time data for Germany, U.K., and the U.S, 

which illustrates these points in a more formal way. Panels A, C, and E report summary statistics 

calculated using real GDP data from the Bundesbank, the Bank of England and the Philadelphia 

Federal Reserve Bank, respectively, while Panels B, D, and F rely on industrial production index 

from IMF International Financial Statistics.  

The average German, U.K., and U.S. real-time and quasi real-time output gap estimates 

are very close and mostly negative for all output gap measures except the output gap estimated 

                                                           
8
 Orphanides (2003) mentions the difficulty of estimating real-time output gap in the presence of trend shifts that 

occur due to the arrival of new data.  
9
 Orphanides and van Norden (2002) use 2000:Q1 as revised data, and we use 2012:Q3. 

10
 While output gaps estimated using other detrending methods sometimes differ in sign and/or magnitude from the 

HP filtered gaps, the differences between real-time, revised, and quasi real-time output gap estimates show similar 

patterns as in Figure 3.  
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using quadratic trend, while the average revised output gap estimates for the three countries are 

generally positive and close to zero.
11

 The differences between the average real-time and revised 

output gap range between 0.5 and 14.5 percentage points for Germany, 0.3 and 8.8 percentage 

points for U.K., and 0.2 and 10.2 percentage points for the U.S. The differences between the 

average quasi real-time and revised output gap estimates range between 0.4 and 14.5 percentage 

points for Germany, 0.2 and 7.6 percentage points for the U.K., and 0.3 and 8.4 percentage 

points for the U.S.  

More evidence on the relative importance of output gap revisions is given in Table 2. 

Column 2 presents the mean of total revisions (derived by subtracting real-time output gap 

estimates from revised estimates) for each detrending method. While the average revision is 

relatively small in magnitude for the HP, BK, and CF filters, it is larger for the linear and 

quadratic trends for each country. The finding in Orphanides and van Norden (2002) that the 

revisions in the U.S. output gap are of the same order of magnitude as the estimated output gaps 

can be extended to Germany and U.K. as well. The last 3 columns of Table 2 report relative 

importance of the revisions in different ways. NS and NSR are two proxies for the noise-to-

signal ratio. While NS is the ratio of the standard deviation of the total revision to the standard 

deviation of the revised output gap estimate, NSR is the ratio of the root mean square of the total 

revision to standard deviation of the revised output gap estimate. In general, the revisions have 

relatively larger variance to the revised estimate of the output gaps for linear and quadratic trends 

compared to the HP, BK, and CF filters. The last column reports the OPSIGN, the frequency of 

opposite signs with real-time and revised output gap estimates. The frequency of opposite signs 

for each filter obtained with IFS real-time data is very similar to the alternative German, U.K., 

and U.S. real-time datasets.  

Tables 3-5 report the correlations between quasi real-time and real-time, real-time and 

revised, and quasi real-time and revised output gap estimates for the U.S., Germany, and the 

U.K. Panels A and B of each table report correlations obtained using alternative real-time dataset 

(Bundesbank, Bank of England, and Philadelphia Federal Reserve Bank real-time datasets) and 

the IFS dataset, respectively.  

                                                           
11

 One would expect the average revised output gap to be close to zero. Although we calculate the trend starting 

from the initial data point in each vintage, the statistics are reported for the output gaps estimated starting from 

1990:Q1 for the Bank of England’s real-time data and 1973:Q1 for the other data sets. 
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Table 3 reports correlations for the U.S. output gap estimates based on the two datasets 

that span the same time period, from 1973:Q1 to 2012:Q3. The correlations between real-time 

and quasi real-time output gap estimates range from 0.920 for the BK filtered output gap to 0.953 

for the quadratic trend using the Philadelphia Fed real-time data. The correlations between real-

time and revised estimates, however, are much lower, ranging from 0.729 for the HP filter to 

0.873 for the linear trend while the correlations between revised and quasi real-time estimates are 

in between, ranging from 0.717 for the HP filter to 0.952 for the linear trend. 

The correlations obtained using the IFS dataset are close to those obtained with 

Philadelphia Fed dataset. The correlations between real-time and quasi real-time output gap 

estimates range from 0.921 for the HP filter to 0.954 for the quadratic trend, while the 

correlations between real-time and revised estimates are lower, ranging from 0.509 for the 

quadratic trend to 0.849 for the linear trend. Thus, the output gaps calculated using both real 

GDP (Philadelphia Fed) and industrial production index (IFS) data demonstrate high correlations 

between real-time and quasi-real output gap estimates and relatively low correlations between 

real-time and revised output gap estimates. 

Table 4 reports correlations for output gap estimates using the Bundesbank and IFS real-

time datasets for Germany. Using Bundesbank data, the correlations between real-time and quasi 

real-time output gap estimates are high, ranging from 0.909 for the HP filter to 0.945 for the CF 

filter. The correlations between real-time and revised estimates are again much lower, ranging 

from 0.002 for quadratic trend to 0.870 for linear trend while the correlations between revised 

and quasi real-time estimates are in between, ranging from 0.115 for the quadratic trend to 0.887 

for the linear trend. The results obtained using IFS data display a similar pattern. The 

correlations between real-time and quasi real-time estimates range from 0.974 for the linear trend 

to 0.987 for the quadratic trend and the BK Filter, the correlations between real-time and revised 

estimates range from 0.208 for the quadratic trend to 0.796 for the CF filter, and the correlations 

between revised and quasi real-time estimates range from 0.236 for the quadratic trend to 0.805 

for the CF filter.
12

  Correlations between real-time and revised output gap estimates with IFS 

data for Germany are higher with the HP and BK filters and lower with quadratic trend compared 

to Döpke (2004).  

                                                           
12

 These results are in accord with Clausen and Meier (2005), who find low correlations between real-time and 

revised output gaps for Germany using the same sample period 1973Q1 to 1998:Q4 with Bundesbank data set. 
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Table 5 reports the correlations between U.K. output gap estimates obtained using the 

Bank of England and IFS real-time datasets. Using Bank of England data, correlations between 

real-time and quasi real-time output gap estimates range from 0.943 for the BK filter to 0.970 for 

the quadratic trend. The correlations between real-time and revised estimates are lower and range 

from 0.605 to 0.938, while the correlations between revised and quasi real-time estimates range 

from 0.583 for the HP filter to 0.863 for the linear trend. With IFS data, the correlations between 

real-time and quasi real-time output gap estimates range from 0.948 for the HP filter to 0.972 for 

the linear trend. The correlations between real-time and revised estimates are lower, ranging 

from 0.422 for the quadratic trend to 0.928 for the linear trend, while the correlations between 

revised and quasi real-time estimates range from 0.398 for the quadratic trend to 0.960 for the 

linear trend. Correlations between real-time and revised output gap estimates with IFS data for 

the U.K. with the HP and BK filters are very similar to Garratt et al. (2009) and Nelson and 

Nikolov (2003).   

5.2 Output Gap Estimates for 7 OECD Countries Using IFS Real-Time Data Set 

Central bank real-time data that spans the period from 1973:Q1 are not available for other 

OECD countries and were collected from IMF International Financial Statistics country pages. 

Table 6 reports summary statistics for five output gap measures in percentage points estimated 

using real-time, revised, and quasi real-time data for Australia, Canada, France, Italy, Japan, 

Netherlands, and Sweden. While the means of real-time and quasi real-time output gap estimates 

are negative with the linear trend, the HP filter, the BK filter, and the CF filter they are positive 

with the quadratic trend. The differences between real-time and revised output gap estimates for 

these countries (ranging from 0.5 percentage points for Australia to 42.8 percentage points for 

Japan) are relatively much larger than the differences between real-time and quasi real-time 

output gap estimates (varying from 0 for France, Sweden to 1.2 percentage points for Italy). 

Table 7 presents the output gap revisions in more detail. First, total revisions are greater on 

average for the linear trend, where the mean varies from 10 percentage points for Australia to 

42.8 percentage points for Japan. Second, output gap estimates revised downwards with the 

quadratic trend for all the countries. Third, noise-to-signal ratios are similar for the HP, BK, and 

CF filters. Finally, it is worth noting that OPSIGN mostly exceeds 50 percent for the linear and 

quadratic trends and stays lower for the HP, BK and CF filters.  
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Table 8 reports the correlations between real-time and quasi real-time, real-time and 

revised, and quasi real-time and revised output gap estimates obtained using IFS data for 

Australia, Canada, France, Italy, Japan, Netherlands, and Sweden. The correlations between real-

time and quasi-real time estimates for Canada, France, Japan, Netherlands, and Sweden are 

higher than either the correlations between real-time and revised estimates or the correlations 

between quasi real-time and revised estimates. This result does not depend on which detrending 

technique is used. Results in Panel B for Canada confirm Cayen and van Norden (2005) that 

correlations between real-time and revised output gap estimates are low and might even be 

negative depending on the filter chosen. Correlations between real-time and quasi-real time 

estimates vary from 0.811 to 0.923 for Canada, from 0.914 to 0.977 for France, from 0.975 to 

0.994 for Japan, from 0.879 to 0.984 for Netherlands, and from 0.869 to 0.947 for Sweden. 

Quasi-real time output gap estimates constitute a good proxy measure for real-time output gap 

estimates.  

Although the correlations between real-time and quasi-real time estimates for Australia 

and Italy are always higher than the correlations between real-time and revised estimates, they 

are not always higher than the correlations between quasi real-time and revised estimates. For 

Australia (Panel A), while the highest correlations with linear and quadratic trend are observed 

between real-time and quasi-real estimates, the highest correlations with HP Filter, BK Filter, 

and CF Filter are between quasi real-time and revised estimates. Correlations of output gap 

estimates with the HP Filter for Australia are in accord with Gruen et al. (2002). The results for 

Italy (Panel D) show that the correlations between real-time and quasi real-time output gap 

estimates are highest except for the linear trend.  

 

6. Conclusions 

Although the output gap plays an important role in the design of monetary policy for 

central banks, constructing reliable measures of output gaps presents a challenge. Since real-time 

and revised output gaps can differ significantly, real-time output gaps can provide an inaccurate 

representation of what will later be understood to have been the “true” output gap, and the use of 

output gaps estimated with ex-post data can lead to an inaccurate assessment of the information 

available to policymakers. 
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For the United States, Orphanides and van Norden (2002) find that changes in the trend 

from extending the sample play a much more crucial role in the difference between real-time and 

revised output gap estimates than the data revisions themselves. We extend their work by 

constructing a real-time data set for 10 OECD countries using industrial production index data 

published in the International Financial Statistics books from 1973:Q1 to 2012:Q3. We also use 

real-time GDP data for three countries – Germany, the United Kingdom, and the United States – 

for which the data is available from alternate sources. Using a variety of output measures and 

detrending techniques, we find that the correlations between real-time and revised output gap 

estimates are low for each country and the correlations between real-time and quasi real-time 

output gap estimates are high for each country, confirming their findings for all 10 countries. 

In order to conduct policy evaluation, such as estimation of Taylor rules, researchers 

would prefer to have real-time output gap data that reflects the information available to 

policymakers. Unfortunately, real-time data needed to construct real-time output gaps is only 

available for very few countries. We show that, if real-time data is not available, one can 

substitute quasi real-time gaps constructed by using revised data, but only estimating the trends 

through the date of the gap. In this manner, researchers can construct reliable real-time output 

gap estimates with revised data.     
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Vintage 1973Q1 1973Q2 1973Q3 1973Q4 1974Q1 1974Q2 1974Q3 1974Q4 1975Q1 1975Q2 1975Q3 

Date            

             

1958Q1 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 

1958Q2 75.14 75.14 75.14 75.14 75.14 75.14 75.14 75.14 75.14 75.14 75.14 

1958Q3 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 73.87 

1958Q4 75.77 75.77 75.77 75.77 75.77 75.77 75.77 75.77 75.77 75.77 75.77 

… … … … … … … … … … … … 

1972Q1 164.90 164.90 164.90 164.90 166.40 166.40 166.27 166.27 167.79 167.79 167.79 

1972Q2 170.10 168.40 168.40 168.40 169.40 169.40 169.31 169.31 170.37 170.37 170.37 

1972Q3 168.30 168.40 168.40 168.40 168.70 168.70 168.70 168.70 170.22 170.22 170.22 

1972Q4 . 175.30 175.60 175.60 177.40 177.40 177.35 177.35 178.41 178.41 178.41 

1973Q1 . . 180.70 180.70 182.50 182.50 182.51 182.51 183.87 183.87 183.87 

1973Q2 . . . 185.20 184.80 184.80 185.24 185.24 186.00 186.00 186.00 

1973Q3 . . . . 183.00 183.60 183.57 183.57 184.94 184.94 184.94 

1973Q4 . . . . . 187.80 188.27 188.27 189.64 189.64 189.64 

1974Q1 . . . . . . 193.73 193.73 194.34 193.89 193.89 

1974Q2 . . . . . . . 192.37 192.82 192.07 192.07 

1974Q3 . . . . . . . . 190.25 189.94 189.94 

1974Q4 . . . . . . . . . 187.21 187.51 

1975Q1 . . . . . . . . . . 182.51 

 

Note: The real-time data for industrial production consists of vintages from 1973:Q1 to 2012:Q3. Each column represents a series of industrial production 

available to market participants in every quarter, and each row shows how an observation for each particular date has been revised over time.  

Figure 1. The Structure of Real-Time Data 
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Figure 2.  Year-to-Year Real GDP and Industrial Production Growth for the U.S. using 

Philadelphia Fed Real-Time Dataset 
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Panel A. Real-Time and Revised Output Gap 

 

Panel B. Quasi Real-Time and Revised Output Gap 

 

 

Panel C. Real-Time and Quasi Real-Time Output Gap 

 

Figure 3.  Output Gap Estimates for the U.S. using Philadelphia Fed Real-Time Dataset 
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Table 1. Output Gap Summary Statistics Using Alternative and IFS Real-Time Datasets 

 Real-Time  Revised Quasi Real-Time 

 Mean SD Min Max Mean SD Min Max Mean SD Min Max 

 A. Germany: Bundesbank Data 

Linear Trend -6.8 3.2 -15.8 -0.3 1.5 5.4 -12.4 10.5 -6.5 3.4 -15.1 2.3 

Quadratic Trend 1.2 3.0 -7.7 9.2 0.0 3.1 -7.7 8.8 1.6 3.2 -6.7 11.5 

HP Filter -0.8 1.1 -4.8 1.4 0.0 1.6 -4.2 4.1 -0.7 1.1 -3.6 2.2 

BK Filter -0.7 1.0 -5.6 1.1 0.0 1.5 -4.2 3.8 -0.7 1.0 -3.9 1.9 

CF Filter -0.5 1.0 -3.7 1.0 0.0 1.6 -4.1 4.0 -0.4 1.0 -3.5 1.4 

 B. Germany: IFS Data 

Linear Trend -12.2 5.2 -25.6 2.4 2.3 9.1 -22.7 20.8 -12.2 5.3 -25.0 1.1 

Quadratic Trend 5.0 6.6 -12.4 19.3 -0.1 7.2 -12.4 16.7 5.1 6.7 -11.9 20.5 

HP Filter -1.1 2.3 -9.6 3.8 0.0 3.8 -14.6 10.4 -1.1 2.3 -9.5 3.8 

BK Filter -1.0 2.3 -12.3 4.3 0.0 3.7 -14.0 11.4 -1.0 2.4 -12.0 4.3 

CF Filter -0.8 2.2 -10.6 4.0 0.0 3.7 -14.3 11.4 -0.7 2.2 -10.4 4.0 

 C. U.K.: Bank of England Data 

Linear Trend 0.0 3.5 -9.9 4.6 0.4 4.1 -9.9 6.7 1.6 4.1 -9.9 6.1 

Quadratic Trend -2.7 3.4 -11.5 1.7 0.4 4.2 -11.5 6.0 -2.6 3.7 -11.5 1.9 

HP Filter -0.5 1.0 -3.0 0.8 -0.1 1.3 -2.8 3.6 -0.3 1.1 -3.4 0.9 

BK Filter -0.4 0.9 -3.2 0.8 0.0 1.3 -2.8 4.2 -0.2 1.0 -3.4 1.0 

CF Filter -0.3 1.0 -2.9 1.8 0.0 1.2 -2.9 3.2 -0.2 1.0 -3.1 1.9 

 D. U.K.: IFS Data 

Linear Trend -7.7 6.6 -25.0 3.2 1.1 7.7 -21.9 12.5 -6.5 6.3 -24.9 2.6 

Quadratic Trend 0.2 5.7 -15.0 10.6 -0.5 5.5 -12.2 9.7 1.1 5.6 -14.7 10.3 

HP Filter -1.1 1.9 -6.0 3.4 0.0 2.6 -6.4 7.7 -0.8 1.9 -5.8 2.9 

BK Filter -1.0 1.7 -6.3 3.4 0.1 2.4 -6.6 5.8 -0.7 1.7 -6.2 2.6 

CF Filter -0.7 1.6 -6.1 2.7 0.1 2.4 -6.1 6.3 -0.4 1.5 -5.2 2.6 

 E. U.S.: Philadelphia Fed Data 

Linear Trend -5.9 3.6 -15.1 2.6 0.6 5.2 -15.1 9.7 -5.1 3.8 -15.2 2.3 

Quadratic Trend -0.4 3.3 -10.4 6.2 -0.2 3.3 -8.2 5.9 -0.5 3.3 -7.6 6.2 

HP Filter -0.6 1.3 -5.6 1.7 0.0 1.6 -4.8 3.8 -0.6 1.3 -4.0 1.8 

BK Filter -0.6 1.2 -5.8 1.8 0.0 1.5 -4.4 3.5 -0.5 1.2 -4.0 1.7 

CF Filter -0.3 1.0 -4.0 2.0 0.0 1.5 -4.0 4.3 -0.3 1.0 -3.2 2.0 

 F. U.S.: IFS Data 

Linear Trend -8.0 6.2 -25.8 3.8 1.2 7.9 -21.2 13.9 -7.2 6.5 -25.2 6.0 

Quadratic Trend 2.2 6.0 -16.1 12.3 -0.4 6.4 -16.3 12.7 2.8 6.2 -15.4 14.1 

HP Filter -10.2 2.7 -9.4 4.3 0.0 3.5 -11.5 7.0 -0.9 2.9 -10.5 4.4 

BK Filter -1.1 2.6 -9.9 4.2 0.1 3.3 -9.5 7.7 -0.8 2.8 -10.3 4.5 

CF Filter -0.6 2.0 -6.7 3.5 0.1 3.3 -9.3 9.1 -0.5 2.0 -6.7 3.9 

Note: The statistics reported for each variable are Mean, the mean, SD, the standard deviation, Min, and Max, the 

minimum and maximum values of output gap estimates in percentage points.  
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Table 2. Summary Revision Statistics Using Alternative and IFS Real-Time Datasets 

 Mean SD Min Max NS NSR OPSIGN 

 A. Germany: Bundesbank Data 

Linear Trend 8.3 3.1 0.0 13.5 0.6 1.6 0.7 

Quadratic Trend -1.3 4.4 -10.8 10.0 1.4 1.4 0.4 

HP Filter 0.8 1.3 -2.7 4.5 0.8 1.0 0.4 

BK Filter 0.8 1.1 -2.0 3.8 0.8 0.9 0.4 

CF Filter 0.5 1.1 -2.2 3.6 0.7 0.8 0.3 

 B. Germany: IFS Data 

Linear Trend 14.5 7.9 0.0 27.8 0.9 1.8 0.5 

Quadratic Trend -5.2 8.7 -15.6 18.3 1.2 1.4 0.6 

HP Filter 1.1 2.5 -9.1 8.0 0.6 0.7 0.2 

BK Filter 1.1 2.3 -8.3 9.7 0.6 0.7 0.3 

CF Filter 0.8 2.4 -3.8 10.0 0.6 0.7 0.3 

 C. U.K.: Bank of England Data 

Linear Trend 0.4 1.5 -2.2 2.9 0.4 0.4 0.1 

Quadratic Trend 3.1 2.1 0.0 6.7 0.5 0.9 0.4 

HP Filter 0.4 1.1 -1.0 3.5 0.8 0.8 0.3 

BK Filter 0.4 1.0 -1.3 3.9 0.8 0.9 0.4 

CF Filter 0.3 0.9 -1.5 3.1 0.8 0.8 0.3 

 D. U.K.: IFS Data 

Linear Trend 8.8 2.9 0.0 18.8 0.4 1.2 0.6 

Quadratic Trend -0.7 6.0 -13.7 10.4 1.1 1.1 0.4 

HP Filter 1.2 1.8 -2.4 8.2 0.7 0.8 0.3 

BK Filter 1.1 1.6 -2.3 5.5 0.7 0.8 0.4 

CF Filter 0.8 1.6 -2.1 4.9 0.7 0.7 0.3 

 E. U.S.: Philadelphia Fed Data 

Linear Trend 6.5 2.7 -0.5 12.0 0.5 1.4 0.6 

Quadratic Trend 0.2 2.2 -4.9 7.1 0.7 0.7 0.2 

HP Filter 0.6 1.1 -2.0 3.7 0.7 0.8 0.3 

BK Filter 0.6 1.0 -2.0 3.2 0.7 0.8 0.2 

CF Filter 0.3 1.0 -1.8 2.8 0.7 0.7 0.3 

 F. U.S.: IFS Data 

Linear Trend 9.2 4.2 0.0 23.9 0.5 1.3 0.6 

Quadratic Trend -2.6 6.2 -13.7 13.0 1.0 1.0 0.4 

HP Filter 1.2 2.5 -4.7 8.3 0.7 0.8 0.3 

BK Filter 1.2 2.2 -4.0 8.1 0.7 0.8 0.3 

CF Filter 0.7 2.4 -4.6 8.3 0.7 0.7 0.3 

Note: The statistics reported for each variable are Mean, the mean, SD, the standard deviation, Min, and Max, the 

minimum and maximum values of total revisions. NS and NSR are proxies for the noise-to-signal ratio. OPSIGN is 

the frequency of opposite signs with real-time and revised estimates. 
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Table 3. Correlations between Real-Time, Revised, and Quasi Real-Time Output Gaps for         

the U.S. using Philadelphia Fed and IFS Real-Time Datasets 

 

 
(Real-Time, 

Revised) 

(Quasi Real-Time, 

Revised) 

(Real-Time, Quasi 

Real-Time) 

A. Philadelphia Fed Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.873 

0.779 

0.729 

0.745 

0.952 

0.783 

0.717 

0.737 

0.923 

0.953 

0.922 

0.920 

CF Filter 0.738 0.752 0.940 

B. IFS Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.849 

0.509 

0.717 

0.743 

0.895 

0.566 

0.784 

0.794 

0.950 

0.954 

0.921 

0.926 

CF Filter 0.723 0.793 0.922 

 Note: The table reports the correlations of linear, quadratic, HP-filtered, BK-filtered and CF-filtered output gaps, 

estimated with real-time and revised data, quasi real-time and revised data, and real-time and quasi real-time data. 
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Table 4. Correlations between Real-Time, Revised, and Quasi Real-Time Output Gaps  

for Germany using Bundesbank and IFS Real-Time Datasets 

 

 
(Real-Time, 

Revised) 

(Quasi Real-Time, 

Revised) 

(Real-Time, Quasi 

Real-Time) 

A. Bundesbank Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.870 

0.002 

0.578 

0.654 

0.887 

0.115 

0.725 

0.728 

0.928 

0.939 

0.909 

0.915 

CF Filter 0.705 0.791 0.945 

B. IFS Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.500 

0.208 

0.789 

0.779 

0.472 

0.236 

0.796 

0.794 

0.974 

0.987 

0.986 

0.987 

CF Filter 0.796 0.805 0.986 

Note: The table reports the correlations of linear, quadratic, HP-filtered, BK-filtered and CF-filtered output gaps, 

estimated with real-time and revised data, quasi real-time and revised data, and real-time and quasi real-time data. 
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Table 5. Correlations between Real-Time, Revised, and Quasi Real-Time Output Gaps 

for the U.K. using Bank of England and IFS Real-Time Datasets 

 

 
(Real-Time, 

Revised) 

(Quasi Real-Time, 

Revised) 

(Real-Time, Quasi 

Real-Time) 

A. Bank of England Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.938 

0.872 

0.631 

0.605 

0.863 

0.818 

0.583 

0.588 

0.950 

0.970 

0.949 

0.943 

CF Filter 0.670 0.682 0.952 

B. IFS Real-Time Data 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.928 

0.422 

0.722 

0.746 

0.960 

0.398 

0.752 

0.764 

0.972 

0.971 

0.948 

0.951 

CF Filter 0.766 0.781 0.960 

Note: The Bank of England real-time data consists of vintages from 1990:Q1 to 2012:Q3, and IFS real-time data 

consists of vintages from 1973:Q1 to 2012:Q3. The table reports the correlations of linear, quadratic, HP-filtered, 

BK-filtered and CF-filtered output gaps, estimated with real-time and revised data, quasi real-time and revised data, 

and real-time and quasi real-time data. 
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Table 6. Output Gap Summary Statistics Using IFS Real-Time Dataset 

 Real-Time  Revised Quasi Real-Time 

 Mean SD Min Max Mean SD Min Max Mean SD Min Max 

A. Australia 

Linear Trend -8.5 5.0 -24.0 8.1 1.5 6.8 -15.6 20.5 -8.9 4.6 -25.2 2.6 

Quadratic Trend 4.6 5.6 -10.0 24.0 -0.2 5.7 -15.4 17.0 4.3 5.3 -10.6 14.3 

HP Filter -0.8 2.5 -9.2 8.9 0.1 2.9 -9.7 7.0 -1.0 2.4 -9.4 4.0 

BK Filter -0.8 2.1 -8.0 7.0 0.1 2.6 -7.9 7.6 -1.0 2.1 -8.6 3.0 

CF Filter -0.4 1.8 -5.2 6.5 0.1 2.7 -8.0 7.1 -0.5 1.7 -6.6 2.8 

B. Canada 

Linear Trend -11.8 5.9 -28.7 0.8 2.2 9.4 -11.8 23.1 -11.5 6.6 -32.1 0.8 

Quadratic Trend 5.7 7.3 -13.2 17.3 0.1 8.8 -18.4 18.9 6.0 7.9 -15.3 20.1 

HP Filter -1.0 2.0 -6.3 2.9 0.1 3.4 -13.3 6.2 -0.8 2.1 -6.1 4.1 

BK Filter -0.9 1.9 -7.1 2.6 0.1 3.2 -10.9 5.8 -0.8 2.0 -7.0 4.9 

CF Filter -0.7 2.0 -6.5 3.9 0.1 3.3 -9.8 6.1 -0.6 2.2 -6.8 3.8 

C. France 

Linear Trend -15.7 6.8 -35.0 6.5 3.7 12.4 -29.8 25.8 -15.7 6.5 -35.5 3.6 

Quadratic Trend 2.7 6.9 -15.9 14.4 0.0 6.6 -11.5 17.7 2.7 6.8 -16.9 14.8 

HP Filter -1.6 2.2 -9.6 3.2 0.0 2.8 -10.1 6.5 -1.6 2.1 -11.8 1.8 

BK Filter -1.4 1.8 -7.9 1.7 0.1 2.7 -9.3 7.1 -1.4 1.7 -8.5 1.4 

CF Filter -0.8 1.7 -7.4 1.7 0.0 2.5 -9.0 5.9 -0.8 1.7 -7.5 1.5 

D. Italy 

Linear Trend -20.8 8.4 -47.4 -2.8 4.3 15.8 -42.3 29.7 -19.6 8.5 -47.8 -1.8 

Quadratic Trend 3.9 6.0 -14.1 13.1 -0.4 6.6 -12.8 15.2 5.1 5.9 -14.5 14.7 

HP Filter -2.3 2.5 -9.6 2.7 0.0 3.9 -12.8 10.5 -1.8 2.5 -9.9 3.8 

BK Filter -2.1 2.1 -11.8 2.0 0.2 3.7 -11.9 10.7 -1.7 2.3 -12.2 3.3 

CF Filter -1.7 2.8 -15.7 2.3 0.1 4.6 -18.1 11.7 -1.9 2.8 -15.1 2.3 

E. Japan 

Linear Trend -35.1 12.3 -77.5 -4.7 7.7 26.9 -62.9 43.9 -36.0 11.8 -75.1 -5.9 

Quadratic Trend 8.7 8.8 -22.6 25.1 -0.8 9.1 -16.3 27.1 8.1 9.0 -22.8 24.4 

HP Filter -1.6 3.3 -17.8 15.4 -0.1 5.1 -24.0 11.8 -1.7 3.1 -15.9 10.6 

BK Filter -1.6 3.8 -18.3 21.3 0.1 4.9 -18.6 12.9 -1.7 3.5 -16.9 15.7 

CF Filter -1.7 2.8 -15.7 2.3 0.1 4.6 -18.1 11.7 -1.9 2.8 -15.1 2.3 

F. Netherlands 

Linear Trend -18.7 5.9 -32.0 3.6 3.9 12.7 -24.4 29.6 -17.9 5.5 -30.6 0.9 

Quadratic Trend 4.5 7.8 -15.1 16.7 0.0 8.0 -12.4 21.1 5.2 8.0 -13.1 16.8 

HP Filter -1.4 1.6 -7.1 2.9 0.0 2.5 -8.4 6.7 -1.2 1.7 -7.6 2.7 

BK Filter -1.1 1.2 -4.7 1.7 0.1 2.2 -7.1 6.4 -1.0 1.2 -5.8 1.5 

CF Filter -1.1 1.3 -5.8 1.8 0.0 2.3 -6.9 6.4 -1.0 1.4 -4.9 1.8 

G. Sweden 

Linear Trend -10.6 9.3 -29.4 6.5 1.3 10.3 -25.4 25.2 -10.9 9.3 -30.2 7.4 

Quadratic Trend 7.8 9.6 -15.5 27.4 -0.5 10.2 -27.3 21.1 7.5 9.4 -16.4 27.7 

HP Filter -0.8 2.6 -9.5 6.7 0.1 4.5 -14.8 10.0 -0.9 2.5 -9.3 4.5 

BK Filter -0.8 2.3 -11.1 3.6 0.1 4.2 -15.3 10.5 -0.8 2.3 -11.2 3.6 

CF Filter -0.7 2.7 -11.0 5.6 0.0 3.9 -14.9 9.9 -0.7 2.6 -11.1 5.1 

Note: The statistics reported for each variable are Mean, the mean, SD, the standard deviation, Min, and Max, the 

minimum and maximum values of output gap estimates in percentage points.  
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Table 7. Summary Revision Statistics Using IFS Real-Time Dataset 

 Mean SD Min Max NS NSR OPSIGN 

 A. Australia 

Linear Trend 10.0 6.9 -10.4 23.8 1.0 1.8 0.6 

Quadratic Trend -4.8 8.7 -33.1 17.5 1.5 1.7 0.5 

HP Filter 0.9 2.8 -14.1 7.5 0.9 1.0 0.3 

BK Filter 0.9 2.3 -11.7 5.0 0.9 0.9 0.4 

CF Filter 0.5 2.2 -10.2 5.5 0.8 0.8 0.3 

 B. Canada 

Linear Trend 14.1 9.2 -1.1 28.0 1.0 1.8 0.5 

Quadratic Trend -5.6 12.1 -21.3 19.1 1.4 1.5 0.6 

HP Filter 1.0 2.7 -7.7 7.9 0.8 0.8 0.3 

BK Filter 1.1 2.5 -5.7 7.9 0.8 0.9 0.3 

CF Filter 0.7 2.4 -6.0 7.2 0.7 0.8 0.2 

 C. France 

Linear Trend 19.4 8.6 0.0 35.0 0.7 1.7 0.6 

Quadratic Trend -2.6 9.5 -18.0 20.2 1.4 1.5 0.5 

HP Filter 1.6 2.0 -3.0 7.1 0.7 0.9 0.4 

BK Filter 1.6 1.8 -2.4 7.1 0.7 0.9 0.4 

CF Filter 0.9 1.7 -2.8 6.1 0.7 0.8 0.4 

 D. Italy 

Linear Trend 25.2 9.7 0.0 40.7 0.6 1.7 0.7 

Quadratic Trend -4.3 6.7 -15.8 11.5 1.0 1.2 0.4 

HP Filter 2.3 2.8 -4.6 12.1 0.7 0.9 0.3 

BK Filter 2.3 2.6 -3.2 12.6 0.7 0.9 0.4 

CF Filter 1.8 3.1 -4.6 13.2 0.7 0.8 0.3 

 E. Japan 

Linear Trend 42.8 16.6 0.0 57.4 0.6 1.7 0.6 

Quadratic Trend -9.6 10.9 -21.4 26.2 1.2 1.6 0.6 

HP Filter 1.5 4.8 -39.5 11.5 0.9 1.0 0.3 

BK Filter 1.7 4.7 -37.0 12.5 1.0 1.0 0.4 

CF Filter 1.8 3.1 -4.6 13.2 0.7 0.8 0.3 

 F. Netherlands 

Linear Trend 22.6 10.7 0.0 38.3 0.8 2.0 0.6 

Quadratic Trend -4.4 12.9 -20.3 25.4 1.6 1.7 0.7 

HP Filter 1.4 1.9 -4.9 6.5 0.8 0.9 0.4 

BK Filter 1.2 1.7 -3.1 6.7 0.8 0.9 0.5 

CF Filter 1.1 1.5 -2.2 5.7 0.7 0.8 0.4 

 G. Sweden 

Linear Trend 11.9 10.2 -5.4 33.6 1.0 1.5 0.5 

Quadratic Trend -8.3 13.0 -36.2 21.5 1.3 1.5 0.4 

HP Filter 0.8 3.8 -7.4 11.7 0.9 0.9 0.4 

BK Filter 0.9 3.3 -7.2 10.6 0.8 0.8 0.3 

CF Filter 0.7 3.5 -7.2 11.0 0.9 0.9 0.3 

Note: The statistics reported for each variable are Mean, the mean, SD, the standard deviation, Min, and Max, the 

minimum and maximum values of total revisions. NS and NSR are proxies for the noise-to-signal ratio. OPSIGN is 

the frequency of opposite signs with real-time and revised estimates. 
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Table 8. Correlations between Real-Time, Revised, and Quasi Real-Time Output Gaps 

using IFS Real-Time Dataset 

 (Real-Time, Revised)  (Quasi Real-Time, 

Revised) 

 (Real-Time, Quasi Real-

Time) 

A. Australia 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.353 

-0.184 

0.488 

0.549 

0.485 

0.010 

0.818 

0.802 

0.654 

0.783 

0.638 

0.701 

 CF Filter 0.603 0.824 0.741 

B. Canada 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.349 

-0.113 

0.615 

0.617 

0.339 

0.000 

0.711 

0.714 

0.866 

0.923 

0.832 

0.811 

CF Filter 0.685 0.783 0.875 

C. France 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.748 

0.012 

0.714 

0.754 

0.808 

-0.029 

0.736 

0.778 

0.972 

0.977 

0.914 

0.917 

CF Filter 0.732 0.751 0.931 

D. Italy 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.852 

0.426 

0.697 

0.722 

0.920 

0.433 

0.801 

0.820 

0.917 

0.838 

0.805 

0.859 

CF Filter 0.741 0.736 0.984 

E. Japan 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.907 

0.263 

0.424 

0.441 

0.901 

0.257 

0.503 

0.514 

0.994 

0.993 

0.976 

0.975 

CF Filter 0.741 0.736 0.984 

F. Netherlands 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.545 

-0.324 

0.657 

0.624 

0.532 

-0.309 

0.743 

0.702 

0.957 

0.984 

0.879 

0.884 

CF Filter 0.765 0.823 0.898 

G. Sweden 

Linear Trend 

Quadratic Trend 

HP Filter 

BK Filter 

0.466 

0.137 

0.510 

0.630 

0.524 

0.186 

0.710 

0.730 

0.919 

0.947 

0.869 

0.876 

CF Filter 0.491 0.718 0.884 

The table reports the correlations of linear, quadratic, HP-filtered, BK-filtered and CF-filtered output gaps, estimated 

with real-time and revised data, quasi real-time and revised data, and real-time and quasi real-time data. 

 




